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Date of Report: 4th Quarterly Report-September 30th, 2020 

Contract Number: 693JK31910018POTA  

Prepared for: DOT PHMSA 

Project Title: Mapping Indication Severity Using Bayesian Machine Learning from 

Indirect Inspection Data into Corrosion Severity for Decision-Making in Pipeline 

Maintenance 

Prepared by: TEES (Texas A&M Engineering Experiment Station) and University of 

Dayton 

Contact Information: Homero Castaneda, hcastaneda@tamu.edu, 979 458 9844. 

For quarterly period ending: September 30th, 2020 

 

1: Items Completed During this Quarterly Period: 
Per the contract, Task 1 is associated with the fourth quarterly report. Task 2 include the 

experimental set up and activities which was concluded as planned. Due to patent and current 

results the laboratory activities will continue and will be included in the final report. The following 

activities have been completed: 

 

Item  Task  Activity/Deliverable Title 

 

Federal 

Cost 

Cost 

Share 

9 1,2,3 4th Quarterly Report 4th Quarterly Report 4,000.00 0.00 

4 1 
Mapping available data via GIS tools and 

geographically co-register all datasets. 

Establishing a 

database 

 

20,000.00 

 

10,000.00 

6 2 
Laboratory set up and electrochemistry mechanisms 

and corrosion assessment 

Experiments and 

analyses to bridge 

gaps in prior 

knowledge 

55,000.00 0.00 

The title of the table is based on the file Technical and Deliverable Payable Milestone 

 

2: Items Not-Completed During this Quarterly Period: 
Task number 2, extract basic corrosion model parameters started during the previous quarter 

report. Part of Task 2 will be cover in the following partial report. The following activities will be 

ready in latter reports based on the Technical and Deliverable Payable Milestone 

 

Item 

# 

Task # Activity/Deliverable Title Federal 

Cost 

Cost 

Share 

8 2 

Extract basic corrosion model  and embed into 

the previously developed stochastic corrosion 

rate model framework 

Experiments and 

analyses to bridge 

gaps in prior 

knowledge 

24,000.00 0.00 

10 3 Three unsupervised learning strategies (k-means, 

Gaussian Mixture Model, and Hidden Markov 

Random Field) for soil corrosivity clustering 

Unsupervised 

learning strategies 20,000.00 3,000.00 

11 3 Two supervised learning strategies (Support Vector 

Machine, Relevance Vector Machine) for defect type 

classification 

Two supervised 

learning strategies 20,000.00 3,000.00 

mailto:hcastaneda@tamu.edu
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3: Project Financial Tracking during this Quarterly Period: 
 

The table has been updated based on the deliverables and corrected attachment No5 Technical 

and Deliverable Payable Milestone. 

 
 

4:  Project Technical Status – 

The following tasks are included in the project: 

 Task 1: Establishing a database 

 Task 2: Experiments and analyses to bridge gaps in prior knowledge  

 Task 3: Bayesian machine learning to bridge gaps in uncertainty quantification. 

 Task 4 Finalize and evaluate/validate the model. 

 

During the fourth quarter, the team members from Texas A&M University (TAMU) and 

the University of Dayton (UD) had weekly meetings and a Workshop with the sponsors. 

The aim of the workshop was to link, analyze and understand the field/ laboratory results 

and how we will use the data to analyze by using data driven techniques. In addition, the 

sponsor explain an update how they can use the algorithm to validate with their data for 

this project. 

 

The team organized the mentioned Workshop entitled “Indirect tools outcome as a 

parameter for severity and how we link the parameters with laboratory results” with the 

sponsor company. 

The outcomes of the workshop will help the PhD students and the engineers of the company 

to understand the corrosion mechanism and which parameters are used as primary 

precursors in the field following the understanding in the well control environment of the 

laboratory and how we can map the severity from several indirect and/or direct methods.  
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Description of the activities for this quarter. 

 

Task 1 – Establishing a database.  

Data handling for simulation purposes – In-line inspection data, soil survey, DCVG and 

CIS data for both pipelines (60 km and 110 km) have been finalized and analyzed and 

check for inconsistencies and consistency. Correction have being taken to resolve any 

issues with the data. A final Master file has been made with all this information combined 

to make the input for the Bayesian analysis as consolidated as possible. We started to 

analyze the field, environment (soil) parameters by using fundamental and semi empirical 

expressions to perform sensitivity analysis for parameters influencing the corrosion process 

and could be linked with the indirect inspection outcome. We added the parameters we 

found in laboratory conditions to align the outcome and distinguish the severity based on 

the surface conditions. 

 

 

Task 2: Experiments and analyses to bridge gaps in prior knowledge 

 

During this quarter, we performed the proposed experimental matrix to identify critical 

gaps in prior knowledge (i.e., current indirect survey (cathodic protection level), 

environmental conditions (soil characteristics) and other databases) and coded (or related) 

to deterministic and probabilistic modeling by following the corrosion mechanism. The 

correlation of different parameters influencing corrosion in field conditions has been 

considered in the laboratory set up and by the response in the laboratory experiments with 

mechanistic and electrochemical analysis. The results of the experimental testing could 

revealed the potential difference between intact (or no defect), active surface due to a 

coating defect and passive surface with corrosion products formed due to a coating 

defect.  

 

Experiments and analyses to bridge gaps in prior knowledge and current response. 

Different relationships and correlation could be found with the fundamentals of 

electrochemistry and electrical signals by following the transfer function techniques 

available in the laboratory that can be use in the field.  The relationships are developed 

from different techniques applied to the system simulated system.  

 

The performed set of laboratory experiments include the effects of soil resistivity (or 

conductivity), pH and the metallic surface condition in the presence of holidays 

(specifically intact, active and passive state) under cathodic protection. The experimental 

design performed is presented in Table1. Buffer solution (with defined conductivity and 

TDS Standards) is applied to adjust solution resistivity. The passive holiday can be 

realized by external anodic current via potentiostat (Gamry, The Interface 600plus™). 

NS4 solution with composition (unit: g/L) of KCl: 0.122, NaHCO3: 0.483, CaCl2: 0.093 

and MgSO4: 0.131 is used to simulate soil conditions. 

Sequence of non-destructive techniques for parameters that are equivalent either with 

DCVG or CIPS measurements; the methods include: the evolution of open circuit potential 
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(OCP) or cell potential, bias or polarized potential, bias Electrochemical impedance 

spectroscopy (EIS), and surface analysis will be carried out in sequence to measure the 

response of experimental set-ups for the analysis of CIS and DCVG database. For the 

electrochemical measurement system, the three-electrode method will be used.  

Samples Coatings 

Thickness 

Soil 

Composition 

Distribution of 

soil 

(resistivity) 

Severity based 

on active-

passive concept 

pH 

AISI 1008/API X52 10-20 mils NS4 1036 ohm cm Active Holiday 4 

AISI 1008/API X52 10-20 mils NS4 1036 ohm cm Active Holiday 7 

AISI 1008/API X52 10-20 mils NS4 1036 ohm cm Active Holiday 10 

AISI 1008/API X52 10-20 mils NS4 1036 ohm cm Passive Holiday 4 

AISI 1008/API X52 10-20 mils NS4 1036 ohm cm Passive Holiday 7 

AISI 1008/API X52 10-20 mils NS4 1036 ohm cm Passive Holiday 10 

AISI 1008/API X52 10-20 mils NS4 714 ohm cm Active Holiday 4 

AISI 1008/API X52 10-20 mils NS4 714 ohm cm Active Holiday 7 

AISI 1008/API X52 10-20 mils NS4 714 ohm cm Active Holiday 10 

AISI 1008/API X52 10-20 mils NS4 714 ohm cm Passive Holiday 4 

AISI 1008/API X52 10-20 mils NS4 714 ohm cm Passive Holiday 7 

AISI 1008/API X52 10-20 mils NS4 714 ohm cm Passive Holiday 10 

AISI 1008/API X52 10-20 mils NS4 870 ohm cm Active Holiday 4 

AISI 1008/API X52 10-20 mils NS4 870 ohm cm Active Holiday 7 

AISI 1008/API X52 10-20 mils NS4 870 ohm cm Active Holiday 10 

AISI 1008/API X52 10-20 mils NS4 870 ohm cm Passive Holiday 4 

AISI 1008/API X52 10-20 mils NS4 870 ohm cm Passive Holiday 7 

AISI 1008/API X52 10-20 mils NS4 870 ohm cm Passive Holiday 10 

Table 1 Experimental design matrix for electrochemical measurements  

Table 1 includes the simulation conditions of the field and the parameters that we consider 

first level or critical for the detection and characterization parameters needed and the 

severity mapping. The active included a metallic surface with a defined defect area with 

all parameters in the table simulating the most sensitive. The severity simulated marked 

three conditions, the intact coating condition, the active and the passive condition. The 

sequence of methods performed for each condition resulted in different outcomes and 

concepts for the severity mapping.  

 

Table 2 includes the experimental techniques used for the quantitative analysis of the 

severity of the metallic surface under soil simulation conditions. The parameters that can 

connected the field and laboratory conditions cover the chemical, physical and electrical 

properties. The outcome is set in tables for the analysis of different precursors for 

corrosion.   

 

 

Experimental technique Outcome parameters Correlation to the field 

interpretation  

Resistivity of the soil 

EIS and measured magnitude 

Soil conditions Resistivity vs. IR 
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OCP and EIS 

Potentiostat and EIS 

Surface mechanisms, 

corrosion rate 

Severity and criterion 

Ranking for correlations 

EIS  

Bias potentiostatic EIS 

Corrosion rate Potential gradient vs severity 

Surface/electrolyte chemical 

analysis 

Potentisotatic  

Influential parameters 

for severity 

Direct and indirect 

parameters to categorize 

severity 

Table 2 Experimental techniques and outcomes for the field interpretation with laboratory 

results. 
 

 

Deterministic approaches based on constitutive equations and continuous electrical 

elements have been used to describe the current distribution under corrosive conditions 

when there is a coating defect on a metallic substrate at the interface when an 

electrochemical cell is formed. We previously had developed a transmission line model 

(TLM) in 1D and 2D models to characterize and quantify each element in the 

electrochemical cell, as illustrated in Fig. 1(a) and 2(b).  EIS technique is able to capture 

several magnitudes characterizing not only the magnitude of each element but the surface 

condition. The generated information is able to add another layer in the machine learning 

model framework. The elements can be related to the severity of the surface by means of 

corrosion rates or parameters that are indirectly measured and estimated via model 

inference.  

 

The multidimensional approach covers mechanistic processes that occur when a 

metallic material includes an anomaly or different conditions of the coating and 

immersed in electrolyte and different parameters characterized the electrochemical 

elements. In addition, the influence of AC signal flowing through external transmission 

lines on local pipeline defects can be represented as that of a transmission line, as shown 

in Fig. 6 

 

 

 

(a)  
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Figure 1. TLM in 1 D (a) and 2D for the coated pipeline (b) 

 

 

Task 3: Bayesian machine learning to bridge the gaps in uncertainty quantification. 

 

Clustering is a major and widely accepted technique which can be used to separate the 

data into distinct homogeneous groups based on their similarity. These have been 

previously employed and found to be an effective tool to assess the soil corrosivity for 

external integrity management of a pipeline structure. Hidden Markov random field 

(HMRF) is used to identify hidden patterns in the data (e.g., different soil categories in 

the current context) when a response variable is not explicitly given, which in this project 

is the corrosion levels at each pipeline segment due to the spatial variation of the soil 

environment and regional environmental factors. Based on the clustering results and the 

corrosivity assessment, different maintenance strategies can be applied to different 

segments of a pipeline structure. More specific, the results of clustering along with direct 

and indirect inspection data can be used to determine the severity of corrosion 

corresponding to each soil category. The clustering result for the 110km pipeline based 

on 7 principal component features is as shown in Figure 2 and Figure 3 shows the cluster 

plot with two of the principal component overlaid with contour plot showing the 

probabilistic distribution of the two principle components.  
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Figure 2. Clustering Result along the right-of-way 

 

 
Figure 3. Scatter plots of two principal components with centroid and contour for 7 

clusters 

As marked in Figure 3, cluster 3 data points are outlier points since the outlier points do 

not form a dense cluster and they are sparsely distributed along the right-of-way. These 

segments were removed from the current analysis and will be investigated individually in 

future. The best model fit was re-evaluated using BIC criteria as shown by Figure 4. 

From the BIC Vs k (number of components) plot we get optimal number of clusters as 6. 
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Figure 4. BIC Vs k (number of components) 

The new cluster analysis result is as shown in Figure 5. Figure 6 shows the plot between 

the first two principal components with centroid and contour overlaid with cluster 

distribution. This clustering result is used to group features which is shown in Figure 7. 

 
Figure 5. Cluster Result with six clusters 

 
Figure 6.  Scatter plots of two principal components with centroid for 6 clusters  
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Figure 7. Cluster groups of soil features 
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Figure 8 shows the distribution of maximum corrosion depth in each cluster for 2005 ILI 

data and 2010 ILI data respectively. The progression (in a statistical means) of corrosion 

over the years is seen clearly for different clusters. 

 
Figure 8. Probability distribution of corrosion points with maximum depth in each cluster 

 

 

 

 

Figure 9 shows the distribution of number of corrosion defects in each cluster for 2005 

ILI data and 2010 ILI data respectively. The increase in number of corrosion spots can be 

identified for different clusters. Maximum number of corrosion defects can be observed 

in the cluster 5 corresponding to the sections with segment ID from 950 to the end of 

pipeline.  
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Figure 9. Probability distribution of number of corrosion points in each cluster 

Figure 10 and 11 shows the indirect inspection data assigned to corresponding clusters. 

The break seen in DCVG data is due to the presence of a river in the pipeline right-of-

way.  

 

 
Figure 10. DCVG voltage along the right of way 
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Figure 11. Difference between CIS ON and OFF potential along pipeline right of way 

Now the data has been clustered along the pipeline segment and the next step is to 

analyze the severity of corrosion in each cluster/ pipeline segment by linking the direct 

(in-line inspection) and indirect (DCVG and CIPS) inspection data and combining the 

findings from the lab results. Detailed work is currently on going. 

 

 

5: Project Schedule –  

 
The project is on-schedule as originally-proposed. 

During the following report, the team will perform Extract basic corrosion model and 

embed into the previously developed stochastic corrosion rate model framework, the 

correlations between field measurements and parameters founded in laboratory conditions 

to extract the information required for the machine learning method. Supervised and 

unsupervised machine learning analysis (to be incorporated into the final report). 

 

6. Publication 

On September 30th, 2020, the conference manuscript was accepted to the NACE 2021 

Conference to be held in Salt Lake City Utah USA. A patent will be filed within few weeks 

for the sensing techniques used for surface severity of buried pipelines.  

 
Observations: The experimental set up and procedure was delayed due to the restrictions 

existed in the laboratory. The planned experiments were completed. There is analysis 

that should be done to validate the experimental testing, this analysis has been delayed 

for the next activity.  

 

 

 


